" LA-UR -86-4336 (.'MF‘X'//JI/"//-. y

Los Alamos National Laporaiory is operated by the University of California for the United States Department of Energy under conivact W-7405-ENG-26.

LoOS AlaMOS Losaamos NatoralLabarstory

TITLE: IMPLEMENTING REMOTE PROCEDURF. CALLS WITH DECNET

LA~-UR--86-4336

AUTHOR(S: E. Bjorklund and S. C. Schaller DEB7 003754

susMITTED TO: DECUS Refereed Papers Competitlo
DECUS Spring Meeting, Nashville. TN,

Apri) 27-May 1, 1987
DISCLAIMER

This report was prepared us un uccount of work sposored by an agency of the United States
Giovernment. Neither the United Stutes Government nor any agency thereof, nor nny of their
cmpinyees, makes uny warrunty, evpress or implied. o ussumes any logal liahility or responsi-
hility for the accuracy, completeness, or usefulness of any information, apparutus, product, o
process disclosed, or represents that ity use would not infringe privately owned righty Reler-
ence herein o any specilic commercil product, process, o service by trade name, trademurk,
munufncturer, ur stherwise does not pecessarily constitute or imply 1ty endorsement, recom-
mendution, or favaring by the United States Government or any agency thereof ‘The views
und opinions of nuthors cxpressed herein do not necessnnly state or reflect those of the
United States CGovernment or uny agency thereof.

By accepiance of this slicle, the pblisher recognizes that ihe U.8 Qovernment retaing a nonexciusive, royeity-free iicensa 1o publish of reproduce
tha published form of Mg conteibution, or 10 aiow olhers 10 do 80, for U8 Government purposes

The Los Alamos Nalionsl Laboratory requests thal 1he publisher identily this article as work pertormed under (N8 auspices of the U 8 Depanment of Znargy

MASTR
Los AlamOS LesAlmos NationalLasorstory

FURAM NO 338 R4
8! NO BP V/0)

-

DISTHIBUTION O Tubo it v 11 Wil

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

IMPLEMENTING REMOTE PROCEDURE CALLS
g WITH DECNET* |

By
Eric Bjorklund and Stuart C. Schaller
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The "Remote Procedure Call" (RPC) has recently become an
importanf communication model for distributed systehs. The basic idea
behind remote procedure calls is that a procs:ss running on one machine
can "call", using standard procedure calling semantics, another
routine that executes on a different machine. A message-passing
mechanism is used to transfer parameters between the caller and the

called routine.

In this paper, we describe a remote procedure call system we have
implemented that uses DECnet as the underlying message-passing
mechanism. Our system is highly reliable, reasonably efficient, and
supports some advanced features such as asynchronous remote
procedures. The described sysctem is currently part of a distributed
accelerator-control system confaining VMS, Micro-vMS, and VAXELN
nodes. It could also be extended to any other system that supports
DECnet. Topics discusséd include the system design, parameter-pascing

pr~tocol, error detection and recovery, and performance.

1 INTRONUCTION

The principal advantage of using remote procedure calls (RPC) for
inter-process communication is the simplicity of the concept. The
procedure call is a well understond mechanism and a useful tool for

* Work supported by the US Department of Energy

IMPLEMENTING REMOTE PR.CEDURE CALLS WITH DECNET Page 2

dealing with abstraction. Remote procedure calls have been
implemented in several distributed systems such as the Xerox “edar
project (2] [S]) and the University of Washington’s Eden project [1].
In addition, any distributed system written in the Ada™ programming
language might also be considered an RPC system since the semantics of
the Ada "Rendezvous" [4) are very similar to those of a remote

procedure call.

1.1 Goals Of The LAMPF RPC System

The RPC system described in this paper was designed to support a
distributed control system for the 800-MeV linear accelerator at the
Los Alamos Meson Physics Facility (LAMPF). The LAMPF control system
uses a VAX 780 as the central control computer, another VAX 780 as a
Jo.velopment computer and backup control computer, and several
Micro-VAX 1I computers for various specialized tasks. Most of the
computers in the system are connected via'Ethernet. The two 780’s run
VMS. The Micro-VAXs run either Micro-VMS or VAXELN. Our system had

to meet the following criteria:

o The system must be easy to use (the whole point of an RPC system

was to simplify 1n£et-ptocess communication).

o The system should be easy to implement. Since the system must be
implemented on two different operating systems, that task should
not be made any more difficult than necessary. Unfortunately,
software at the level of an RPC interface does not lend itself
well to transportability. The next best thing was to keep the

number of lines of code to a minimum.

0 The system must support processes that are written in different
languages, that run under different operating systems, and

communicate over different media. In addition to being able to

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 3

communicate across a network, the system should also support

comnmunication between processes residing on the same node.

o Speed is not of the essence (but...). Most of the time-critical
functions in our control system are performed by dedicated
hardware, or by moderately dedicated remote computers. Still, the
system should not be so slow that it exceeds the operator

frustration threshold.

1.2 Design Decisions

Given the constraints mentioned in the previous section, we made
some design decisions that differ from many of the other currently
implemented RPC systems. Two of these decisions were: 1) to support
both synchronous and asynchronous procedure calls, and 2) to use

DECnet rather than design our own communications protocol.

1.3 The Use Of DECnet

Many RPC systems implement their own communications protocol.
The reason for this 1is that the RPC model is simple enough that a
specialized communications protocol can be faster and more efficient
than a more general message-passing system such as DECnet. This is
especially true in a homogeneous system where there 1is only one
communications medium, one processor type, and one operatiiig systam.
Given the heterogeneity of our network and the desire to keep the RPC
interface easy to implement, we decided to let DECnet handle the basic
communications problems of message delivery, routing, checksumming,

and error retries.

2 THE STRUCTURE OF THE RPC INTERFACE

The RPC interface is divided into two parts, a "Caller’'s

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 4

Interface" and a "Server’s Interface". Figure 1 illustrates the
structure of the RPC interface for the case where the caller is on a
VMS node and the setver is on a VAXELN node (one of the more common

cases in our control system).

SERVER'S
CALLER’'S NODE NODE

1
Argument List Server 1
Address, Parm, Descriptors, ele,i

i

SERVER
PROCESS

Call Message
and

Routine
Address

CALLER
PROCESS Argument List

Argument
»List

]
]
Reply Message \ AST :
: | ROUTINE
]
]

Figure 1
RPC System Structure

2.1 The Caller’s Interface

On the caller’s node, the calling process is linked to a stub
routine which has the same name and the same set of parameters as the
remote procedure. The stub routine passes its parameters, along with
some additional information, to the RPC interface routine,
RPC_REMOTE_CALL. RPC_REMOTE_CALL packs the parameters into a call
message and sends the call message over the network to the server
process. If the call is synchronous, the calling process is blocked
until the remote procedure completes. If the call is asynchronous,
control is returned to the caller, and when the remote procedure

completes the AST routine (RPC_REPLY AST) will execute.

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 5

when the remote procedure completes, the server’s RPC interface
sends a "reply message" back to the caller. The reply message is read
by RPC_REMOTE_CALL (for synchronous calls) or RPC_REPLY AST (for
asynchronous calls) and is passed to the routine, RPC_PROC_REPLY.
RPC_PROC_REPLY unpacks the reply message and writes the values of the

output parameters into their variables.

2.2 The Server Process

Procedures are not usually stand-alone entities -- they are
generally contained within some environment such as a process or an
operating system. 1In our system, remote procedures are contained
within snecial processes called "server processes". As the name
implies, a "server process" provides a service, such as analyzing data
or controlling a device. It also provides a set of remote procedures

that access this service.

The job of a server process is to listen for call messages,
determine which procedure should be invoked, and pass the address of
that procedure, along with the call message, to the server’s RPU
interface routine, RPC_CALL_ROUTINE. RPC_CALL_ROUTINC re-creates the
argument list from the call message and then calls the specified
procedure. When the procedure returns, RPC_CALL_ROUTINE packs the
output parameters into a reply message which it then rends back to the

caller process.

3 ASYNCHRONOUS REMOTE PROCEDURE CALLS

Some RPC systems pupport asynchronous remote procedure calls
while other systems only support synchronous calls. Whether or not
asynchronous calls are necessary seems to depend on how well the
operating syster supports local concurrency [3]) (allowing a singie

task to have multiple threads of control). VAXELN provides good

LMPLEMENLTING REMULE PRUOCEDURE CALLS Wi'LH DECNBEYL rage o

support for local concurrency. We decided, however, that we needed to

support asynchronous remote procedure calls on VMS nodes.

One of the problems with asynchronous procedures is knowing when
the procedure has completed. There are several methods a program may
use to accomplish this. It can poll one of the procedure’s output
variables to see if it has been written yet, or it can wait on some
event or semaphore that is signaled by the procedure. Some systems
also allow for a special interrupt routine to be invoked when an

asynchronous activity completes.

Our RPC system provides all three of the above methods (depending
on the operating system). On a VMS or Micro-VMS node, the caller can
poll an output variable, wait for an event flag, schedule an AST, or

any combination of these £hree.

Sometimes the caller does not care when, or even if, the remote
nrocedure completes. 1In this case, the call can be a "No-Reply" call
and the remote procedure will execute independently of the calling
process. The server’s RPC interface will not send back a reply
message when the procedure completes. No-reply calls should therefore

not be made to procedures with output or modified parameters.

As might be expected, synchronous calls comprise the majority of
the remote procedure calls in our control system. Asynchronous and
no-r2ply cualls are generally used only vhen increased performance is

required.

4 PROCEDURE BINDING

Traditional procedureé are normally bound to their callers at
either compile or link time. Remote procedures, however, must
generally bs bound at run time. Three things are required to bind a

caller to a remote procedure in our system: the name of the server

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 7

process, the name of the node the server process is runnirng on, and

the name of the procedure to call.

The node and server names are used to create a DECnet "logical
link" between the calling process and the server process. The
procedure name is translated into a "procedure ID" and sent to the
server process in the call message. Procedure ID numbers need only be
unique within a server. By convention, procedure ID zero is always
the ID of the diagnostic echo routine (RPC_ECHO) provided hy the

server’s RPC interface.

Whenever possible, all binding information shouid be provided by
the stub routine. Sometimes, however, part of the binding information
must be supplied by the caller. For example, if the same service is
available on more than oné node, the node name must be provided by the
caller. The diagnostic echo routine, RPC_ECHO, is available on every
server on every node. Consequently both the node name and the server

name must be supplied by the caller.

5 PARAMETER PASSING

The caller’s RPC interface uses the argument list passed to the
stub routine to coastruct the call message. The argument list alone,
however, is not sufficient. The RPC interface must also know how to
interpret each of the arquments. The interpretation of the argument
list is provided by a data structure callad the "Parameter Descriptor
Block" (PDB) which is supplied by the stub. The PDB contains a
four-byte entry for each arqument. Each entry describes the
parameter’s type, its calling mechanism, and its length. The format

of a I'DB entry is shown below in figure 2.

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 8

Length Type Mech.
2 1. 0

Figure 2
Format of Parameter Descriptor Block Entry

5.1 Calling Mechanism

The first byte of the PDB entry describes how the parameter is
passed. The RPC interface recognizes five different mechanisms: pass
by value, pass by reference, pass by descriptor, function return, and

absent.

The RPC interface automatically detects missing parameters and
flags them as such in the call message. The stub routine can also
unilaterally flag a paraméter absent by declaring it absent in the
PDB. For example, a remote procedure may require a "node-name"
parameter in order to bind the call to thé correct node. Usually,
however, the node-name parameter is used only by the RPC interface and
not by the procedure itself. 1In this case, the stub routine would
mark the node-name parameter absent in the PDB, and the RPC interface
would not incur the overhead of sending an unused parameter across the

network.

A "Function Return" PDB entry does not correspond to any
parameter in the argument list. 1Its presence indicates that the

procedure is a function and will return a function value.

5.2 Parameter Types

fhe RPC interface not only needs to know the calling mechanism of
a parameter, it also needs t. know something about how that parameter
is used. The second byte of a PDB entry gives the parameter type.

There are seven parameter types: input, output, modified, status,

AMPLEMENTING KEMULE PRUCKDURE CALLS Wi'lh UBUNLY rage -
event, AST address, and AST parameter.

A status parameter is a special case of an output parameter. The
way the RPC interface detects and reports errors requires that it know
which parameters contain status codes (see section 7). Status
parameters are always passed to the remote procedure, even if they
were omitted in the caller’s argument list or marked absent by the

stub.

AST address, AST parameter, and event parameters can be used to
signal the end of an asynchronous procedure call. When the remote
procedure returns, the caller’s RPC interface will set any event flags

and declare any AST routines that were in the argument list.

Obviously there can be many different combinations of parameter
type and calling mechanism. The RPC interface will detect an invalid
combination, such as an output parameter passed by value, and report

an error.

6 MESSAGE FORMATS

An RPC call or reply message consists of a message header
followed by zero or more "parameter definitions". The message header

for a call message is shown below in figure 3.

unused |Num Parms| Proc ID |[Call Type

Length of Reply Message

Count

l Caller’s Node Name

Figure 3
Message H:.ader (Call Message)

The call message header contains the type of call (synchronous,

IMPLEMEMTING REMOTE PROCEDURE CALLS WITH DECNET Page 10

asynchrorous, or no-reply), the ID number of the procedure to call,
the number of parameter definitions in the message (including absent
parameters and function return values), the expected length of the
reply message, and the caller’s node name. The server’s RPC interface
uses the length of the reply message to allocate storage for the reply
message. The caller’s node name can be used by the server to
implement a node-level "access control list" for its remote

procedures.

unused |Num Parms| Proc ID |Call Type

Status

Figure 1
Message Header (Reply Message)
The first four bytes of the reply message (figure 4) have the
same function as the first four bytes of the call message. The last
four bytes of the reply message contain a status code which is used to

report errors detected by the server’s RPC interface.

The parameter definitions following the messagé header contain
the information necessary for the server’s RPC interface to
reconstruct the arqument list and for the caller’s RPC interface to
unpack the oufput variables. The format of a parameter definition is

shown in figure 5.

Length Type Mech.

Address (if parm is output or modified)

: Parameter Value :
Figure 5

Parameter Definition (One for Each Argument)

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 11

The first four bytes of the parameter definition contain the PDB entry
for the parameter. If the parameter is an output or modified
parameter, then the next four bytes of the parameter definition will
contain the address of the parameter (in the caller’s address space).
This parameter address can not, of course, be used by the server
process since the caller aﬁd server do not share a common address
space. It is present in the RPC message for "preservation", since the
original argument list may no longer exist when an asynchronous

procedure call returns.

The last part of the parameter definition is the parameter value.
values of input or modified parameters are passed to the server in the
call message. Values of output or modified parameters are passed back
to the caller in the reply message. Values of event, AST parameter,
and AST address parameters are "stored" in the RPC message (passed
both ways) so that they will be available to the caller’s RPC

interface when the procedure returns.

7 ERROR HANDLING

The RPC interface must deal with errors from three sources: 1)
errors detected by the remote procedure, 2) errors detected by the RPC
interface, and 3) errors detected by DECnet. All errors are handled

in a uniform manner.

7.1 Errors Detected By The Remote Procedure

The RPC interface supports two mechanisms for reporting errors
which we call the "VMS error standard" and the "VAXELN error
standard". 1In the "VMS error standard", a status code is returned as
the procedure’s function value. To support the VMS standard, the stub
routine need'only create a PDB entry with the parameter type "status"

and mechanism "function return". 1In the "VAXELN error standard", one

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 12

of the procedure’s parameters is an optional status parameter. If the
optional status parameter is present, the routine will return a status
code in it. If the optional status parameter is absent, and the

procedure detects an error, the procedure will raise an exception.

If a parameter is declared in the PDB to be a "status" parameter,
the RPC interface will always péss it to the remcte procedure -- even
if it was omitted from the argument list. When the remote procedure
returns, the caller’s RPC interface will examine the value of this
status parameter. If the status value is not a success code
(low-order bit set), and the parameter definition indicates that the
parameter is absent, the caller’s RPC interface will raise an '
exception in the caller’s process. In this manner errors detected by
remote procedures are signaled in the calling process rather than in

the server process.

7.2 Errers Detected By The RPC Interface

The RPC interface can detect certain "protocol" errors such as an
invalid procedure ID. Error. detected by the RPC interface are
handled in the same manner as errors cetected by the remote procedure.
The RPC interface will search the PDB for a status parameter. If a
status parameter is found, and it is present in the argument list, the
RPC interface will writé a status code into the status parameter and
return to the caller. If no status parameter is found, or if the

status parameteL is absent, the RPC interface will raise an exception.

Anothar type of error detected by the RPC interface occurs when
the remote procedure terminates abnormally (e.g. divide by zero
errors, etc.). To catch any such abnormal terminations, the server'’s
RPC interface establishec a condition handler prior to ~alling the
remote procedure.‘ If the remote procedure aborts, the condition

handler will store the reason for the abort in the status field of the

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 13

reply message header. The caller’s RPC interface can then handle the

abort like any other error.

7.3 Errors Detected By DECnet

We make the assumption that if DECnet reports a communications
error, then it has done everything it can, including retzies, to get
the message delivered. We therefore will not retry the message
ourselves. We also assume that if DECnet succeeded in delivering the
message, then the message is correct, so we do not checksum our
messages either. Communications errors are treated the same way as
any other error, except that when a communications error is detected
the RPC interface will shut down the logical link between the caller

and the server process.

8 CONSTRUCTING THE STUB ROUTINE

Me 1.y RPC systems will automatically generate stubs from
information supplied by the compiler or from special "procedure
definition files". We did not feel, however, that the standard VAX
program development environment would adequately support automatic

stub génaration.

Since we dun't generate stubs automatically, we have tried to
make the tack of manually creating‘a stub as easy as possible. In
most cases, all that a stub routine has to do is supply the parameter
descripter block (PDB),Ithe procedure binding information, the type of
call (synchronous, asynchronous, or no-reply), and a call to
RPC_REMOTE_CALL to p&ss this information on to the RPC interface. The
architecture of the VAX procedure call allows the RPC iaterface to
diractly access the argument list passed to the stub routine. The

stuk does not have to pass it explicitly.

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET

Page 14

Figure 6 illustrates what a stub routine for the RPC_ECHO

diagnostic routine might look like.

MODULE RPC_ECHO_STUB [IDENT('11 SEP 86')];
EXPORT RPC_ECHO; '

‘ RPC_ECIO PFunction Declaration

)1 INTEGER;

! Define the parameter descriptor block for RPC_ECHO

{ Code for RPC_ECHO

'BEGIN
RPC_ECHO 1= RPC.REMOTE_CALL (NODE 1= NODE,
LYISTENER tm PRC ES8,
ROUTINE.ID tm 0,
REPLY_FLAG te Ri T K_SYNCH,
FUM_PARMS t= NUM_PARMS,
TIMEOUT 1= 30,

PARMDESC_BLOCK 1= PDB)

AU OOVR AJAVAWNMHMOVLE JAUVALAWNFOVEJAVUAWNMHOYE JOAVNAWNM

Shhdd W W IWWWWWNNNRAN NN AN B S 0 s b s b b s s

END (rpc—echo)
END, (module)

=8 10 (oo 58 | P b 3o 8 Pt =8 [t [t Pt [P ot Pt i b Pt Pl i b Pt Pt i b i A i M S O DO OO OOCOO0O

EPASCAL/LIST RPCECHO,LCS_LIBIPAS LIVB‘/LI BRARY

INCLUDE RPCDEF; (RPC symbol & routine definitions)

FUNCTION RPC_ECHO NODE: READONLY STRING (<N1>),;
PROCESS: READONLY STRING : <R)y
INPUT_STRING: (READOMLY STRING (<N)y

VAR OUTPUT_STRING! STRING (<NO)

CONAT
NUM_PARMS = 3; (nuaber of parameters)
VAR
PDB: (READONLY] ARRAY (1..NUM_PARMS] OF _RPCDEF
tm ((RPCICABSENT, RPC_K_INPUT.). node}
RPC.I_ADSENT, RPC_K_INPUT, 0), lll.'v.l’
RPC.X_DESCR, RPC_I_INPUT, 0), tut_ltrlnq)
RPC.K.DESCR, RPC_X _OUTPUT, 0) put_string)
RPC_K_FURC, RPCX_STATUS, 4)5: tunctlon return)

node name)
SOrvVer name)
RPC_ECHO)
synchronous call)
number of parms)
30 loeond-i

para descriptions)

Figure 6
Sample Stub Routine

Note that the node and server name parameters have been forced

"absent" in the PDB. These parameters are only used for binding; the

RPC_ECHO routine itself does not reference them. Also note that

RPC_ECHO conforms to the "VMS error standard" since a status code is

returnad as the function value.

9 PERFORMANCE

Figure 7 shows how our RPC system compares with DECnet alone.

RPC_ECHO was used to send a block of data over a 10-megabit Ethernet

line from a VAX 780 running VMS, to a Micro-VAX II running VAXELN, and

back again. The round-trip times are compared with those of another

program that just uses DECnet to do the same thing.

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 15

Protocol
Number of Bytes
Transferred RPC DECnet
0 Bytes 15.63 ms | 13.31 ms
512 Bytes 22.46 ms | 18.39 ms
2048 Bytes 41.42 ms 35.03 ms
8192 Bytes 113.81 ms | 95.69 ms

Figure 7
Message Echo Times

As can be seen from the table, the RPC interface adds about 20 percent

to the DECnet overhead.

10 CONCLUSIONS

The remote procedure call model works well when the communicating
processes are in a cliént/server relationship. The model breaks down,
however, when the processes must interact as equals or when broadcast
capability is requirod. Fortunately, the client/server relationship

is common in distributed systems such as ours.

We feel that our system has succeeded in merging the simplicity

of the RPC model with the power and flexibilicy of DECnet. The

resulting system has been both reliable and easy to use.

DECnet does impose a certain amount of overhead, and our RPC
system adds to that overhead. 8o far this overhead has not been
intolerable. 1In some situations the use of asynchronous procedure

calls has lessened the 1mpactlo£ the overhead.

11 ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions of Stan
Brown, Gary Carr, and Jim Harrison for their help and guidance with

this project.

IMPLEMENTING REMOTE PROCEDURE CALLS WITH DECNET Page 16

(1)

(2]

(3]

(4]

(5]

REFERENCES

ALLMES G.T., BLACK A.P., LAZOWSKA E.D., and NOE J.D., The Eden
System: A Technical Review (IEEE Trans. Software Eng. SE-1T,
Januvary 1985) pp 43-

BIRRELL A.D., and NELSON B.J., Implementing Remote Procedure Calls
(ACM Trans. Computer Systems, Vol. 2, No. 1, February 1984)
pp 39-59.

BLACK A.P., Supporting Distributed Applications: Experience with
Eden, (Proceeagngs, Tenth ACM Symposium on Operating Systems
Principles. Operating Systems Review, Vol. 19, No. 5, December
1985) pp 181-193.

ICHBIAH J.D., HELIARD J.C., ROUBINE O., BARNES J.G.P.,
KRIEG-BRUECKNER B., and WICHMANN B.A. Rational for the Design of

the ADA Programming Language, Section II, Tasking (SIGPLAN
Notices, Voi. 14, No. 6, Paré B, June 19595.

SWINEHART D.C., ZELLWEGER P.T., and HAGMANN R.B. The Structure of
Cedar (Proceedings, ACM SIGPLAN ’'85 Sympcsium on Language Issues

n Programming Environments. SIGPLAN Notices Vol. 20, No. 7, July
1985) pp 230-244.

